Local and Global Minimality Results for a Nonlocal Isoperimetric Problem on ℝN
نویسندگان
چکیده
We consider a nonlocal isoperimetric problem defined in the whole space RN , whose nonlocal part is given by a Riesz potential with exponent α ∈ (0, N − 1) . We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1 -norm. This criterion provides the existence of a (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer, and allows to address several global minimality issues.
منابع مشابه
Local and Global Minimality Results for a Nonlocal Isoperimetric Problem on R
We consider a nonlocal isoperimetric problem defined in the whole space RN , whose nonlocal part is given by a Riesz potential with exponent α ∈ (0, N − 1) . We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1 -norm. This criterion provides the existence of a (explicitly determined) critical thresh...
متن کاملA Note on the Global Minimizers of the Nonlocal Isoperimetric Problem in Two Dimensions
In this article we analyze the minimization of the so-called nonlocal isoperimetric problem (NLIP) posed on the flat 2-torus. After establishing regularity of the free boundary of minimizers, we show that when the parameter controlling the influence of the nonlocality is small, there is an interval of values for the mass constraint such that the global minimizer is exactly lamellar; that is, th...
متن کاملGlobal attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملSlow motion for the nonlocal Allen–Cahn equation in n-dimensions
The goal of this paper is to study the slow motion of solutions of the nonlocal Allen–Cahn equation in a bounded domain Ω ⊂ R, for n > 1. The initial data is assumed to be close to a configuration whose interface separating the states minimizes the surface area (or perimeter); both local and global perimeter minimizers are taken into account. The evolution of interfaces on a time scale ε−1 is d...
متن کاملCascade of Minimizers for a Nonlocal Isoperimetric Problem in Thin Domains
For Ω ε = (0, ε) × (0, 1) a thin rectangle, we consider minimization of the two-dimensional nonlocal isoperimetric problem given by inf u
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2014